
SMCompiler



SMCompiler in a nutshell

High-level tasks:

● Implement an SMC protocol

● Evaluate its performance

● Use in an application

Deliverables: 2-page report and code

Deadline: March 28th, 2025 at 23:59

Form groups (https://forms.gle/3LANqQrQCf2dTLef7) before February 28

https://forms.gle/3LANqQrQCf2dTLef7


Implementation Goal*: Convenient Python library for SMC
*very simplified

# Define secrets

alice_secret = Secret()

bob_secret = Secret()

# Define arithmetic circuit (=“expression”)

expr = alice_secret + bob_secret

# Alice runs protocol, communicating with Bob and third parties

run_protocol(expr, value_dict={alice_secret: 5})

# Bob runs protocol, communicating with Alice and third parties

run_protocol(expr, value_dict={bob_secret: 12})



1. Implementation: SMC with Secret Sharing

Building Block
Additive Secret Shares

23

N Parties

Value: x

Operate over a field 𝔽 (for example, integers 
modulo a prime p)

▪ Share: given a value 𝑥 ∈𝔽 we compute 
shares 𝑥1 ,…, 𝑥𝑁:

• Sample 𝑥2 ,…, 𝑥𝑁 uniformly at random from 𝔽
• Set 𝑥1 = 𝑥 − σ𝑖= 2

𝑁 𝑥𝑖 (over 𝔽)
• We denote 𝑥 = { 𝑥1 ,…,𝑥𝑁 } the sharing of 𝑥

▪ Reconstruction: given a sharing 𝑥 =
{𝑥1 ,…, 𝑥𝑁} output 𝑥 = σ𝑖= 1

𝑁 𝑥𝑖

𝑥1

𝑥𝑖

𝑥𝑁

Privacy Property: given at 
most N – 1 shares, an 

adversary learns nothing 
about the shared value x



1. Implementation: Secret Sharing and Addition



1. Implementation: Multiplication using Beaver triplets



1. Implementation – we provide:

● Skeleton of the implementation in Python

● Test suite that your implementation has to satisfy (test_integration.py)

● Code handling networking and communication

github.com/spring-epfl/CS-523-public

https://github.com/spring-epfl/CS-523-public


1. Implementation - Overview of the skeleton

Your implementation should normally reside in these files: 
● secret_sharing.py—Secret sharing scheme
● expression.py—Tools for defining arithmetic circuits (=“expressions”)
● ttp.py—Trusted parameter generator for the Beaver multiplication scheme
● smc_party.py—SMC party implementation

Some code that will help you out: 
● protocol.py—Specification of SMC protocol
● communication.py—SMC party-side of communication
● server.py—Trusted server to exchange information between SMC parties

Tests
● test_integration.py—Integration test suite. Your implementation must pass these.

● Some templates of test files for you to start from



1. Implementation - Communication

● send_private_message(receiver, label, message)

● retrieve_private_message(label)

● publish_message(label, message)

● retrieve_public_message(sender_identifier, label)

● retrieve_beaver_triplet_shares(operation_identifier)



2. Evaluation

Measure costs = runtime and communication

● Effect of the number of parties on costs

● Effect of the number of additions on costs

● Effect of the number of multiplication on costs



3. Application

Requirements:

● Involves multiple parties

● Uses all types of operations

Implementation: Test the correctness of your implementation of the circuit

Analysis: 

● Motivation for your application

● Threat model

● Privacy properties: SMC guarantees that parties learn nothing but the output, 

but the output itself may leak private information



Deliverables

Report:

● Use the report template provided in the repository

● In the introduction, clearly state what each group member did



SMCompiler in a nutshell

High-level tasks:

● Implement an SMC protocol

● Evaluate its performance

● Use in an application

Deliverables: 2-page report and code

Deadline: March 28th, 2025 at 23:59

Form groups (https://forms.gle/3LANqQrQCf2dTLef7) before February 28

https://forms.gle/3LANqQrQCf2dTLef7

	Slide 1: SMCompiler
	Slide 2: SMCompiler in a nutshell
	Slide 3: Implementation Goal*: Convenient Python library for SMC *very simplified
	Slide 4: 1. Implementation: SMC with Secret Sharing
	Slide 5: 1. Implementation: Secret Sharing and Addition
	Slide 6: 1. Implementation: Multiplication using Beaver triplets
	Slide 7: 1. Implementation – we provide:
	Slide 8: 1. Implementation - Overview of the skeleton
	Slide 9: 1. Implementation - Communication
	Slide 10: 2. Evaluation
	Slide 11: 3. Application
	Slide 12: Deliverables
	Slide 13: SMCompiler in a nutshell

