SMCompiller

SMCompiler in a nutshell

High-level tasks:
e |Implement an SMC protocol
e Evaluate its performance

e Use in an application

Deliverables: 2-page report and code
Deadline: March 28t 2025 at 23:59
Form groups (https://forms.gle/3LANQOrQCf2dTLef7) before February 28

https://forms.gle/3LANqQrQCf2dTLef7

Implementation Goal*: Convenient Python library for SMC

*very simplified

alice secret = Secret()
bob_secret = Secret()

expr = alice_secret + bob_secret
run_protocol(expr, value dict={alice_secret: 5})

run_protocol(expr, value dict={bob _secret: 12})

1. Imp

ementation: SMC with Secret Sharing

Building Block e :
Add |t|Ve Secret Shares adversary learns nothing

about the shared value x

Operate over a field F (for example, integers
modulo a prime p) X

« Share: given a value x €F we compute

shares xq, -, xp: 1 R '
« Sample x,, -+, xy uniformly at random from F x; i

e Setxy = x — 0?2:2} Xi (over]F) Value: x '
« We denote [x] = {x;, -, xy} the sharing of x ‘
XN
= Reconstruction: given a sharing [x] =
{xq,"- xy} output x = Og:1}xi

N Parties

1. Implementation: Secret Sharing and Addition

Computing on shares
Addition (Add-Protocol)

General Structure/Invariant: the parties in the
protocol hold secret shares of the circuit wire
values.

Here: Party i holds secret shares s;, v; such

that:s =);s; and v =), v;. S ;
Goal: Each party must obtain ¢; such that v

t =Y;t; =s+wvorinotherwords [t] =[s+ v]

Algorithm:
= Each party (locally!) sets t; = s; + v;

1. Imp

ementation: Multiplication using Beaver triplets

Computing on shares s)
Multiplication (Mul-Protocol) . nt

Here: Party i holds secret shares Algorithm:
sy v such that:s = %;s; and v = 1. Each party locally computes a share of
2. v as well as shares a;, by, ¢;, for [d] = [s- a] and broadcasts it. As a
a fresh Beaver Triplet (a, b, ¢) result, everybody learns d
Goal: Each party must obtain ¢; 2. Each party locally computes a share of
such that ¢ = ¥, t; = sv or in other [e] = [v- b]and broadcasts it. As a
words [t] = [sv] result, everybody learns e
3. Locally compute a share of:

A useful identity: [sv] = de +d[b] +elal +[c]

sv=(s —a+a)(v —b+b) (note that this requires only additions

=(d+a)e+b) and multiplications by constants)

=de+db+ae+ ab
=de+db+ae+c

1. Implementation — we provide:

e Skeleton of the implementation in Python
e Test suite that your implementation has to satisfy (test_integration.py)

e Code handling networking and communication

qgithub.com/spring-epfl/CS-523-public

https://github.com/spring-epfl/CS-523-public

1. Implementation - Overview of the skeleton

Your implementation should normally reside in these files:

® secret_sharing.py—Secret sharing scheme

® expression.py—Tools for defining arithmetic circuits (=“expressions”)

® +ttp.py—Trusted parameter generator for the Beaver multiplication scheme
® smc_party.py—SMC party implementation

Some code that will help you out:

® protocol.py—Specification of SMC protocol

® communication.py—SMC party-side of communication

® server.py—Trusted server to exchange information between SMC parties

Tests
® test integration.py—Integration test suite. Your implementation must pass these.
® Some templates of test files for you to start from

1. Implementation - Communication
e send private message(receiver, label, message)
e retrieve private message(label)

e publish message(label, message)
e retrieve public _message(sender_identifier, label)

e retrieve beaver_ triplet shares(operation_identifier)

2. Evaluation

Measure costs = runtime and communication

o Effect of the number of parties on costs

o Effect of the number of additions on costs

o Effect of the number of multiplication on costs

3. Application

Requirements:
e Involves multiple parties
e Uses all types of operations

Implementation: Test the correctness of your implementation of the circuit

Analysis:

e Motivation for your application

e Threat model

e Privacy properties: SMC guarantees that parties learn nothing but the output,
but the output itself may leak private information

Deliverables

Report:
e Use the report template provided in the repository
e In the introduction, clearly state what each group member did

SMCompiler in a nutshell

High-level tasks:
e |Implement an SMC protocol
e Evaluate its performance

e Use in an application

Deliverables: 2-page report and code
Deadline: March 28t 2025 at 23:59
Form groups (https://forms.gle/3LANQOrQCf2dTLef7) before February 28

O
ir
=

https://forms.gle/3LANqQrQCf2dTLef7

	Slide 1: SMCompiler
	Slide 2: SMCompiler in a nutshell
	Slide 3: Implementation Goal*: Convenient Python library for SMC *very simplified
	Slide 4: 1. Implementation: SMC with Secret Sharing
	Slide 5: 1. Implementation: Secret Sharing and Addition
	Slide 6: 1. Implementation: Multiplication using Beaver triplets
	Slide 7: 1. Implementation – we provide:
	Slide 8: 1. Implementation - Overview of the skeleton
	Slide 9: 1. Implementation - Communication
	Slide 10: 2. Evaluation
	Slide 11: 3. Application
	Slide 12: Deliverables
	Slide 13: SMCompiler in a nutshell

